How this chemical engineer is hacking plastic production to promote sustainability

He has used biomass to engineer renewable chemicals that are essential to the production of widely-used materials from plastics to rubber-based products

The products many of us purchase on a regular basis — the water bottles, clothes and, perhaps especially in the era of COVID, take-out containers from our local restaurants — are often plastic, disposable and bound to outlive us for generations. But the enormous amount of plastic waste that humans leave behind is a logistical and ecological nightmare, and experts say potential solutions must be approached from multiple angles, both for the planet’s sake and for our own.

Chemical engineer Paul Dauenhauer of the University of Minnesota has dedicated his career to revolutionizing the materials we rely on most. He’s worked to derive crucial “chemical building blocks” from renewable resources that can be used to manufacture existing products, as well as create entirely new alternatives.

Unlike materials like fallen leaves or animal waste, which decompose easily with help from microbes, the plastics we use today can’t break down as well. And they pose another environmental threat because of the way fossil fuels, whose derivatives are used to create many consumer products, including plastics, are extracted from the earth.

See Also:

Italian PM Conte resigns

The first Tesla Superchargers in Greece (photos)

Dauenhauer, who was named a 2020 MacArthur fellow, has used biomass — like wood and plants — to engineer renewable chemicals that are essential to the production of widely-used materials from plastics to rubber-based products. Isoprene, for example, is a “monomer” chemical that can be strung together to create polymers like the substance used to make car tires. Dauenhauer has derived isoprene from biomass that’s considered a “drop-in replacement” because it’s identical to one that can also be derived from fossil fuels, and offers the exact same performance.

Read more: PBS