Many people living today have a small component of Neanderthal DNA in their genes, suggesting an important role for admixture with archaic human lineages in the evolution of our species. Paleogenetic evidence indicates that hybridization with Neanderthals and other ancient groups occurred multiple times, with our species’ history resembling more a network or braided stream than a tree. Clearly the origin of humankind was more complex than previously thought.
It is essential to use multiple lines of evidence to investigate the impact of such hybridization. Ancient DNA is rarely well-preserved in fossil specimens, so scientists need to recognize possible hybrids from their skeletons. This is vital for understanding our complex past and what makes us human. Professor Katerina Harvati of the Senckenberg Center for Human Evolution and Paleoenvironment at the University of Tübingen, Germany, together with Professor Rebecca R. Ackermann of the Human Evolution Research Institute at the University of Cape Town, South Africa, have investigated the impact of hybridization using fossil skulls and identified individual potential hybrids in the past. Their work has been published in the journal Nature Ecology and Evolution.
Bipedal Cassie sets Guinness World Record for robotic 100-meter sprint
Careful analysis of the data
To do this, the researchers investigated a large number of fossil remains of ancient humans from the Upper Paleolithic of Eurasia, dating to approximately 40 to 20 thousand years ago. Several of these individuals have yielded ancient DNA showing a small component of Neanderthal ancestry in their genes, reflecting their recent admixture with this group. Their skull bones were compared with (unadmixed) samples from Neanderthals and early, as well as recent, modern humans from Africa.
Read more: Archaeonews Net